

•  Objectives

–  Datapath architecture

–  Parallel and sequential structure

–  Controller

–  Functional blocks

–  IPs

–  Interface

–  Time budget

–  A sample architecture of MSDAP

•  What is the architecture of an IC
–  Architecture determines the main functional blocks, their relationship

with each other, and more importantly where and when high level
operations are performed.

•  Importance
–  A proper architecture is critical to ASIC chip performance and cost.

–  It is perhaps the most important criterion in distinguishing a good
design from a poor one.

•  Architecture design relies on the knowledge and experience of a
designer,
–  It is still a matter of art that cannot be fully automated by EDA tools.

•  Figure 4‑1 indicates the phase of architecture design in the design
flow and highlights the involved work.

•  At architecture level, functional blocks or Intellectual
Properties (IPs) are considered as basic components.
–  In this chapter we shall study how to model and connect these

functional blocks.

•  Operations of functional blocks and data flow will be
coordinated by a Finite State Machine (FSM).

•  The system architecture is finally described using VHDL (or
Verilog) at the RTL level
–  It can be used for a clock cycle-by-cycle simulation, as well as

for next phase synthesis and verification.

•  At the end of this chapter, an example architecture of the
MSDAP is presented in detail to illustrate architecture
development.

•  At the top level, a digital system can be partitioned into
two parts: a datapath and a controller.

•  The datapath is used to store, manipulate, and transfer
data, and the controller provides the command for these
operations.

–  Figure 4‑2 illustrates a general datapath structure, where
the controller is usually an FSM; ALU is an arithmetic
logic unit consisting of an adder, multiplexer and shifter;
input/output interface usually is made of shift registers. The
memory and bus are used to store and transfer data,
respectively.

•  In an ASIC architecture each functional block must be defined
precisely, including its functionality, input/output pins and
signals, as well as the performance requirement in terms of
clock cycles.

•  An architecture designer partitions the system function into
sub-functions, each of them realized by a functional block.

•  The architecture designer also needs to specify the control
signals of each block, which controls the corresponding
operation and data flow.

•  In many cases, one has to use the components from a
company’s existing cell library or IPs from other parties.
–  This adds additional constraints to the architecture design.

•  The objectives of architecture design are twofold:

–  to minimize hardware resources which implement the
specified function while satisfying the given performance
requirement, and

–  to have a clean partition of the function and a clear
relationship between the partitioned sub-functions which
facilitates verification and testing.

•  In the single processor structure, the number of ALU units
is minimal and other components are added, such as data
and coefficient RAMs, and data path controllers.

•  In the previous general datapath structure shown in Figure
4‑2, functional blocks are represented at a very high level,
and many details are omitted.

–  For instance, the ALU is a general arithmetic logic unit
without implementation details.

–  Even for such a simple ALU there might be more than one
implementation option.

•  Two possible ALU architectures for the computation of
linear convolution

–  A straight forward architecture without specific constraint

–  An architecture with the constraint proposed by the
MSDAP

•  A straight forward architecture

•  An architecture with the constraint

•  Parallel properties are explored in the design when a
single processor, for instance one ALU, doesn’t satisfy the
application computation speed requirement.

•  We use a pipeline structure as an example to explore the
property of the multiprocessor parallel computation.

–  An example

•  How it works

•  Operation details

•  Its properties and advantages

•  To demonstrate the structure variety, a slightly different
version can be introduced as shown in Figure 4‑6.

•  Speed-up obtained by parallel structure

•  The choice between single and multi-processor structure
will mainly be determined by the cost, provided that both
can accomplish the specified task.

–  For instance, the MSDAP project not only uses a single
processor structure, but further uses a 1-bit shifter to reduce
the cost, because today’s IC speeds can easily satisfy such
computation needs.

•  We have seen that the datapath structure consisted of
functional blocks as the basic circuit elements.

•  In real design practice, the complexity of these functional
blocks may vary from a simple adder to a powerful
microprocessor, such as an ARM core in some ASIC
designs.

•  Regardless of whether it is a simple or a complex
functional block, it needs to be completely defined in a
similar way as we define a normal ASIC chip.

•  The definition should include the following basic
information:

–  Functionality

–  Input/output pins

–  Signals

–  Interface requirements

–  Layout area and shape specifications

–  Performance requirements

–  Other requirements depending on the application settings

•  A general view of a functional block

•  In electronic design one can use the existing functional
block provided by the third party, called semiconductor
intellectual property core, IP core, or IP block.

•  This is a reusable unit of logic, cell, or chip layout design
that is the intellectual property of another party.

•  The term is derived from the licensing of the patent and
source code copyright intellectual property rights that
concern the design.

•  IP cores are frequently used as building blocks within
ASIC chip designs.

•  IP cores in the electronic design industry have had a
profound impact on the design of systems on a chip.

–  For instance, ARM cores have been widely used in many
cell phones and multimedia applications.

•  By licensing a design multiple times, IP core providers
spread the cost of development among multiple chip
makers.

–  IP cores are the re-usable functional blocks within the
entire IC industry, instead of within a single IC company.

•  IP cores for standard processors, interfaces, and internal
functions enable chip makers to put more resources into
developing the differentiating features of their chips.

–  As a result, chip makers are able to develop new
innovations faster.

•  The licensing and use of IP cores in chip design became
common practice in the 1990s.

–  The microprocessor cores of ARM Holdings are recognized
as some of the first widely licensed IP cores.

•  It has been a popular choice for many digital applications
because of its competitive time to market.

–  Using such IPs we can significantly improve design
efficiency and product reliability since these IP cores have
been optimized and tested.

•  IP cores are typically offered as synthesizable RTL
netlists.

–  Synthesizable cores are delivered in a hardware description
language such as Verilog or VHDL.

–  These are analogous to high level languages such as C in
the field of computer programming.

•  IP cores delivered to chip makers as RTL allow chip
designers to modify designs if necessary, though many IP
vendors offer no warranty or support for modified designs

–  Thus modifications require extreme caution and detailed
verification.

•  IP cores are also sometimes offered as generic gate-level
netlists.
–  The netlist is a Boolean-algebra representation of the IP’s

logical function implemented as generic gates or process
specific cells. A gate-level netlist is analogous to an
assembly-code listing in the field of computer
programming.

–  A netlist gives the IP core vendor reasonable protection
against reverse engineering.

•  Both netlist and synthesizable cores are called soft cores,
because both allow a synthesis, placement and route
(SPR) design flow.

•  The advantage of an IP core implemented as a generic
gate is that it is portable to other process technologies, if
the technology is compatible.

•  Because different processes might be used to implement
the gates in the netlist, the timing of the logic circuit may
change.

–  A careful timing analysis, both static and dynamic, should
be followed to ensure the correct operation.

•  Analog and mixed-signal logics are generally defined as
lower-level physical descriptions.

–  Hence, analog IP (PLLs, DAC, ADC, etc.) are provided to chip
makers in transistor-layout format such as in GDSII (GDSII
2011).

•  Digital IP cores are sometimes offered in a layout format as
well. Such cores, whether analog or digital, are called hard
cores (or hard macros), because the core’s application function
cannot be meaningfully modified by chip designers.

–  Transistor layouts must obey the target foundry’s process design
rules, and hence, hard cores delivered for one foundry’s process
cannot be easily ported to a different process or foundry.

•  Merchant foundry operators offer a variety of hard-macro
IP functions built for their own foundry process, helping
to ensure customer lock-in.

•  Hard cores, by the nature of their low-level
representation, offer better predictability of chip
performance in terms of timing performance and area.

•  With the presented specs and signal definitions in Chapter 3
for the MSDAP, we now show an example architecture from
the project report (Patel and Hernandez-Garduno 2009).

•  A high level abstraction is presented in Figure 4‑8 to facilitate
the discussion of defining the functionality of each block.

–  The timing information related to the detail clock is not complete
since we still need more detailed structures of ALU to budget the
number of operations.

•  Each block is defined as required in Figure 4‑7 so that its
functionality, input/output, status and control signals are
precisely stated.

•  Definition of the function blocks in the architecture

•  Control logic definition

–  The main function of the Control Logic of the MSDAP is described in
Chapter 3 when discussing the system mode and settings.

•  A sample VHDL code has been developed which handles the state
transitions.

–  In addition, this Control Logic handles all data transfers and memory
reads and writes. It also handles trivial operations such as sign
extension and shift operations.

–  For this reason, other components in the MSDAP architecture are
designed as asynchronous elements which are able to start their
function within 1 Sclk cycle.

–  The Control Logic also completes the task of monitoring and updating
top level control signals as specified by the MSDAP specification (the
operation mode in Figure 3-7, and signal format and waveform at
Section 3.5.2).

•  SIPO definition

–  The SIPO module is the front-end data interface of the
MSDAP that takes 1-bit serial data synchronous to a Data
Clock and converts it to 16-bit parallel data.

–  New input words are signaled by an increase in the Frame
signal on the first bit of the serial frame and output words
are signaled ready by an increase in the DataWordReady
signal for the clock cycle, so that the word is guaranteed
valid.

–  The SIPO module is cleared by an active high Reset signal.
Following are its I/Os and data and control signal
definitions.

•  SIPO definition (details)

•  Memory definition

•  Adder/Subtracter definition

•  Shift operation definition

–  The shifting operation of the MSDAP is performed by the
Controller FSM by reassigning the bit positions of the
output of the adder when accumulating the final result and
thus is not specified as a separate module.

–  The DataOut signal is the final shifted result that is
outputted by the PISO module.

•  PISO definition

–  The PISO module is the data interface of the MSDAP that
processes 40-bit parallel data outputs serially via a 1-bit
port synchronous to Sclk upon the arrival of the next Frame
signal.

–  Output words are signaled ready by an increase of the
DataOutValid signal.

–  The OutReady signal is set high for the 40 bits that the
PISO is serially outputting data.

–  The SIPO module is cleared by an active high Reset signal
and does not output when it receives a high Sleep signal.

•  From the above example, we see how functional blocks are
defined.

•  With a complete definition, blocks can be assigned to different
design groups and be verified individually before integrating
them into the system.

•  The definition of a function block also includes control signals
since a block is controlled by a top level FSM.
–  For instance, a signal Reset is a signal from the Controller FSM

that instructs the memory, SIPO and PISO to clear their contents
and set them to an initial condition.

–  A functional block also usually feeds the controller information
about its status. DataOutValid in the PISO block is such an
instance.

•  In a parallel manner, during the architecture development
we not only define the functional blocks and
corresponding relations, but also assign a time budget to
each functional block.

•  Specifically,

–  Each functional block should be given adequate cycles to
complete its assigned job;

–  The input to each functional block must be ready when it is
needed.

•  Time budget is usually obtained from a process called
resource allocation and scheduling.

•  Resource allocation assigns computation tasks to
functional blocks, and scheduling arranges these tasks in
such a way that they can be executed without confliction.

•  To find the time window for a task to be executed we can
use the schedule techniques like as soon as possible and
as late as possible.

–  However, combining scheduling with optimal resource
allocation is a difficult task. Most of the time, it is still a
decision made based on experience.

•  The time budget depends on the proposed architecture
and its feasibility must be analyzed carefully in the
architecture design stage.

•  A structure is requisite to discussing this topic.

•  In the next section we shall use the architecture of our
MSDAP project to show how to allocate the time budget.

•  Figure 4‑8 is a top level general datapath architecture,
which we have used to assist the discussion of how to
define functional blocks.

•  However, architecture should be developed such that it
can eventually be coded at an RTL level so that a cycle-
by-cycle simulation can be carried out to verify the
correctness of the digital system without involving
detailed logic and circuit designs.

•  The degree of detail depends on the designer, but it must
be to a level where we can write VHDL code and verify
the hardware design.

•  In doing so, we need to do work similar to what we did in
developing the specification of the MSDAP. That is, we need
to define the signals and functions among the functional
blocks.

–  For example, in referring to the general architecture in Figure
4‑8, we do not know how to write the VHDL code since we
haven’t defined the interfaces between the functional blocks.

–  Therefore, one can’t tell in what way ALU works with memory
and output interface blocks.

–  In short, too many details are missing there.

–  In the following we look at how to develop such an architecture.

•  Based on the spec, a proposed architecture for the
MSDAP is shown in Figure 4‑9, which allows us to
describe it in VHDL.

–  Only one channel is shown here for clarity. Notice that not
all the I/O pins for each functional block have been
included.

–  Also, the main controller is shared between the two
identical datapath blocks, left and right.

–  (Appendix D presents a complete version of this
architecture with all detailed notations and definitions.)

•  Definition of each functional block in this architecture are
formally presented in the text book.

Here is the
definition of
Data Memory

•  In this chapter we discussed how to develop an
architecture based on the given application.

•  The most popular architecture is a datapath which
consists of control logic, input/output, and an ALU unit.

•  These blocks can be further partitioned into smaller
functional blocks to facilitate a clear and accurate
definition of timing and operation.

–  Such level of detail is necessary for an accurate analysis of
timing budget.

•  Final architecture should be described at the RTL level for
synthesis and verification.

•  A sample architecture for the MSDAP is given to
illustrate the concepts mentioned in the discussion.

–  VHDL codes of the main blocks of the sample architecture
are given to show how to accurately describe each
functional block without any human language ambiguity,
since such code can be simulated for verification.

•  The whole design of the MSDAP, including its
architecture, is given in Appendix D, from which the
interested reader can have a complete picture of the
design process.

•  This chapter also discussed how to explore the parallelism
by using multiple processors.
–  The key issue is to properly align the data and operations to

obtain the maximum speed-up.

•  The optimal design is if all processors are doing the
necessary computations and not being idle.

•  Optimal scheduling and resource allocation is the key for
a good architecture.
–  This topic has been studied extensively in high-level

synthesis. Readers who are interested in this topic can
check the research literatures on this subject and find the
state-of-the-art CAD tools to assist architecture design.

1.  Explain how to define function blocks in architecture design. Try
to formalize the method and give an example.

2.  Give an example to show how data and computation dependency
prevents us from achieving linear speed-up.

3.  Summarize the method of architecture development in ASIC
design.

4.  Synthesizing a behavior model to get an RTL level netlist needs an
“underlined architecture”, for any non-trivial application. Discuss
this issue using an example.

5.  Discuss why architecture design automation is extremely difficult.
Suggest the method to solve this problem.

6.  Develop an architecture of the MSDAP.
7.  Explain the issue of “resource allocation” and “scheduling” in the

architecture design. Use the architecture if MSDAP as an example.

