odern ASIC Desi

Dian Zhou (] &)
E. E. Department
The University of Texas at Dallas
USA

d sequential structure

Cr

al blocks

Introduction

What is the architecture of an IC

— Architecture determines the main functional blocks, their relationship
with each other, and more importantly where and when high level
operations are performed.

* Importance

— A proper architecture is critical to ASIC chip performance and cost.

— It is perhaps the most important criterion in distinguishing a good
design from a poor one.

* Architecture design relies on the knowledge and experience of a
designer,

— It is still a matter of art that cannot be fully automated by EDA tools.

* Figure 4-1 indicates the phase of architecture design in the design
flow and highlights the involved work.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

System
specification

Architecture
design

Logics and
circuits

Physical
layout

Timing,
power and
performance
evaluation

Verification
and testing

Tape out for
fabrication

Partition the system
function into the
executions of several
functional blocks

Explore the
relationship between
functional blocks for
proper hardware
allocation and
scheduling

Define the interface
and signals between
functional blocks

Assign time budget to
each functional block

Transfer the system
operation into RTL
level execution

Figure 4-1 Architecture design phase in ASIC design flow and its task

* At architecture level, functional blocks or Intellectual
Properties (IPs) are considered as basic components.

— In this chapter we shall study how to model and connect these
functional blocks.

* Operations of functional blocks and data flow will be
coordinated by a Finite State Machine (FSM).

* The system architecture 1s finally described using VHDL (or
Verilog) at the RTL level

— It can be used for a clock cycle-by-cycle simulation, as well as
for next phase synthesis and verification.

* At the end of this chapter, an example architecture of the
MSDAP 1s presented 1n detail to illustrate architecture
development.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

Datapath Structure

» At the top level, a digital system can be partitioned into
two parts: a datapath and a controller.

* The datapath is used to store, manipulate, and transfer

data, and the controller provides the command for these
operations.

— Figure 4-2 1llustrates a general datapath structure, where

the controller 1s usually an FSM; ALU is an arithmetic
logic unit consisting of an adder, multiplexer and shifter;
input/output interface usually 1s made of shift registers. The
memory and bus are used to store and transfer data,
respectively.

[O/11/11

Modern ASIC Design - Chapter 4 Architecture Design

Datapath block

Input
interface

Output
interface

Figure 4-2 A general datapath structure

What to do in architecture design

* In an ASIC architecture each functional block must be defined
precisely, including its functionality, input/output pins and
signals, as well as the performance requirement 1n terms of
clock cycles.

* An architecture designer partitions the system function into
sub-functions, each of them realized by a functional block.

* The architecture designer also needs to specify the control
signals of each block, which controls the corresponding
operation and data flow.

* In many cases, one has to use the components from a
company’s existing cell library or IPs from other parties.

— This adds additional constraints to the architecture design.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

* The objectives of architecture design are twofold:

— to minimize hardware resources which implement the
specified function while satisfying the given performance
requirement, and

— to have a clean partition of the function and a clear
relationship between the partitioned sub-functions which
facilitates verification and testing.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

Single Processor Sequential Structure

* In the single processor structure, the number of ALU units
1s minimal and other components are added, such as data
and coefficient RAMs, and data path controllers.

* In the previous general datapath structure shown in Figure
4-2, functional blocks are represented at a very high level,
and many details are omitted.

— For 1nstance, the ALU 1s a general arithmetic logic unit
without implementation details.

— Even for such a simple ALU there might be more than one
implementation option.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design 10

architectures fo

forward architecture without sp

ecture with the constraint proposed

shown 1n Figure 4-3. The multiplication of h(k) and x(n — k) can be done mn a
conventional manner by shifting x(n — k) according to h(k) and adding and
accumulating the shifted results. This process 1s controlled by a state machine which
gives proper control signals based on h(k). In this structure, shift operation is
achieved by using a barrel shifter which can in one cycle shift an input at a specified
distance d in the range 1 < d < 16. During the computation of h(k)x(n — k)v, the

controller keeps to select x(n — k) by controlling the multiplexer’s input. At the

same time, 1t lets the barrel shifter, adder and accumulator continue the computation

of h(k)x(n — k)v. After completing the multiplication of h(k) and x(n — k), the
multiplication of h(k + 1)x(n —k — 1) 1s executed 1n a similar way. At this time

the controller selects the next input x(n —k — 1) through the multiplexer, and
continue to shift according to h(k + 1), and adds and accumulates the shifted
h(k+ 1)x(n—k —1) to the previous production result h(k)x(n—k). All
operations are controlled cycle-by-cycle by the state machine (an FSM) in the
architecture. Connections between the controller and these components are not

shown 1n the figure but can be easily added.

Data in

Register

Multiplexer

State machine to
control the operation
and data flow Barrel shifter

Accumulator

l Data out

Figure 4-3 A single processor architecture using a barrel shifter for linear filter

In many applications there are additional constraints on the choice of potential
architecture. As in our MSDAP project the application specifically requires the use
of a “1-bit shifter” for the entire computation i order to save on hardware costs.
This leads to the architecture shown in Figure 4-4 (only the shifting, addition and

accumulation parts are shown for the simplicity). This structure uses a 1-bit shifter

and therefore a word can only be shifted by a distance of 1-bit each cycle.

Data RAM

Controller
(State machine
to control the
operation and
data flow)

Accumulator

Output
register

Data out

Figure 4-4 A single processor architecture using a 1-bit shifter for the MSDAP
project

Multi-processor Parallel Structure

 Parallel properties are explored in the design when a
single processor, for instance one ALU, doesn’t satisfy the
application computation speed requirement.

* We use a pipeline structure as an example to explore the
property of the multiprocessor parallel computation.

— An example

parallel computation. Consider again the linear filter convolution y(n) =
YN -3 h(k)x(n — k). For the simplicity of discussion, assume that the filter has an

order N = 4. We can have the following pipeline structure as shown in Figure 4-5.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design 17

Data in

Data out

register
register

Figure 4-5 A multiprocessor pipeline structure for linear filter

10/11/11

Modern ASIC Design - Chapter 4 Architecture Design

In this structure, an mput 1s loaded into all multipliers at the same clock cycle and

the multiplications are performed in parallel. Outputs of multiplication are sent to

the adders and they are accumulated when they move through the pipeline.
Additions are also done in a parallel manner. After a three data cycle latency, this

structure will generate an output after each data cycle sequentially.

Here is the illustration for computing y(4),y(5),y(6),y(7),---. From the

convolution formula we need to compute respectively:
y(4) = h(0)x(4) + h(1)x(3) + h(2)x(2) + h(3)x(1)
y(5) = h(0)x(5) + h(1)x(4) + h(2)x(3) + h(3)x(2)

y(6) = h(0)x(6) + h(1)x(5) + h(2)x(4) + h(3)x(3)

y(7) = h(0)x(7) + h(1)x(6) + h(2)x(5) + h(3)x(4)

Prior to sending in data mputs, coefficients h(0), h(1), h(2) and h(3) are loaded
mto the multiplier’s mput ports as shown in the figure. After x(4) 1s loaded into the
data mput line, x(4)h(3), x(4)h(2), x(4)h(1) and x(4)h(0) are performed in
parallel by four multipliers. Note that the second register from the right had

previously stored the result h(1)x(3) + h(2)x(2) + h(3)x(1), which together with
the newly calculated h(0)x(4) will become the inputs to the rightmost adder. After
the addition, y(4) 1s obtained which will be sent into the rightmost register for
output. The computation of y(5), y(6), y(7), ---, will be done in a similar fashion.

Now let’s examine the performance property of this structure. First, the
coetficients are fixed at the corresponding multiplier’s input port and thus there 1s no
need to load them from the memory during the convolution process. This will avoid
unnecessary data movement and n turn save power. Secondly, there are no idle
components and no unnecessary operations during the whole computing process. In

fact this 1s a very desirable property in parallel architecture design.

The above pipeline structure has another obvious advantage in that there 1s no

need for a data controller, because data and operations are naturally aligned during

the computation. For such a structure, the verification and testing are also simple.
However, there are N multipliers and N adders in this structure. Clearly 1t 1s

expensive 1n terms of hardware cost. To demonstrate the structure variety, a slightly

register register register

Data out

Figure 4-6 A different multiprocessor pipeline structure for the linear filter

Suppose the multiplication of h(k)x(n — k) m both single processor structures

Figure 4-3 and multi-processor pipeline structure Figure 4-5 takes one unit of time.
Then the multi-processor structure Figure 4-5 will be N times faster than that of the
single processor structure Figure 4-3. In this case, we have an N-time speed-up by
adding N-times hardware components. This, a linear speed-up, 1s the best kind of
speed-up, because it can be achieved by the inherent operation regularity in the
linear convolution. In general 1t 1s not always possible to obtain such a linear speed-
up because there might be processors which have to idle during computation. In
many cases the data flow cannot be easily organized as in our example of the linear

convolution because of data and computation dependency.

* The choice between single and multi-processor structure
will mainly be determined by the cost, provided that both
can accomplish the specified task.

— For instance, the MSDAP project not only uses a single
processor structure, but further uses a 1-bit shifter to reduce
the cost, because today’s IC speeds can easily satisfy such
computation needs.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

Functional Blocks and IPs

* We have seen that the datapath structure consisted of
functional blocks as the basic circuit elements.

* In real design practice, the complexity of these functional
blocks may vary from a simple adder to a powerful
microprocessor, such as an ARM core 1n some ASIC
designs.

» Regardless of whether it 1s a simple or a complex
functional block, 1t needs to be completely defined in a
similar way as we define a normal ASIC chip.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

depending on

* A general view of a functional block

data input data output
clock :
Functional block
status signal
enable

Figure 4-7 A general view of the functional block

_

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

IP Cores

In electronic design one can use the existing functional
block provided by the third party, called semiconductor
intellectual property core, IP core, or IP block.

This 1s a reusable unit of logic, cell, or chip layout design
that 1s the intellectual property of another party.

The term 1s derived from the licensing of the patent and
source code copyright intellectual property rights that
concern the design.

IP cores are frequently used as building blocks within
ASIC chip designs.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

* [P cores 1n the electronic design industry have had a
profound impact on the design of systems on a chip.

— For instance, ARM cores have been widely used in many
cell phones and multimedia applications.

* By licensing a design multiple times, IP core providers
spread the cost of development among multiple chip
makers.

— [P cores are the re-usable functional blocks within the
entire IC industry, instead of within a single IC company.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design 30

d processors, interf
le chip makers to put more
¢ differentiating features of t

It, chip makers are able to develop n

* The licensing and use of IP cores 1n chip design became
common practice in the 1990s.

— The microprocessor cores of ARM Holdings are recognized
as some of the first widely licensed IP cores.

* [t has been a popular choice for many digital applications
because of its competitive time to market.

— Using such IPs we can significantly improve design
efficiency and product reliability since these IP cores have
been optimized and tested.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

Soft core

* [P cores are typically offered as synthesizable RTL
netlists.

— Synthesizable cores are delivered in a hardware description
language such as Verilog or VHDL.

— These are analogous to high level languages such as C in
the field of computer programming.

* [P cores delivered to chip makers as RTL allow chip
designers to modify designs if necessary, though many IP
vendors offer no warranty or support for modified designs

— Thus modifications require extreme caution and detailed
verification.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

* [P cores are also sometimes offered as generic gate-level
netlists.

— The netlist 1s a Boolean-algebra representation of the IP’s
logical function implemented as generic gates or process
specific cells. A gate-level netlist 1s analogous to an
assembly-code listing in the field of computer
programming.

— A netlist gives the IP core vendor reasonable protection
against reverse engineering.

* Both netlist and synthesizable cores are called soft cores,

because both allow a synthesis, placement and route
(SPR) design flow.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

* The advantage of an IP core implemented as a generic
gate 1s that 1t 1s portable to other process technologies, 1f
the technology i1s compatible.

* Because different processes might be used to implement
the gates 1n the netlist, the timing of the logic circuit may
change.

— A careful timing analysis, both static and dynamic, should
be followed to ensure the correct operation.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

Hard core

* Analog and mixed-signal logics are generally defined as
lower-level physical descriptions.

— Hence, analog IP (PLLs, DAC, ADC, etc.) are provided to chip

makers in transistor-layout format such as in GDSII (GDSII
2011).

» Digital IP cores are sometimes offered in a layout format as
well. Such cores, whether analog or digital, are called hard
cores (or hard macros), because the core’s application function
cannot be meaningfully modified by chip designers.

— Transistor layouts must obey the target foundry’s process design
rules, and hence, hard cores delivered for one foundry’s process
cannot be easily ported to a different process or foundry.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

* Merchant foundry operators offer a variety of hard-macro
I[P functions built for their own foundry process, helping
to ensure customer lock-in.

* Hard cores, by the nature of their low-level
representation, offer better predictability of chip
performance 1n terms of timing performance and area.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

Functional Blocks in the MSDAP Architecture

* With the presented specs and signal definitions in Chapter 3
for the MSDAP, we now show an example architecture from
the project report (Patel and Hernandez-Garduno 2009).

* A high level abstraction 1s presented in Figure 4-8 to facilitate
the discussion of defining the functionality of each block.

— The timing information related to the detail clock 1s not complete
since we still need more detailed structures of ALU to budget the

number of operations.

* Each block 1s defined as required in Figure 4-7 so that its
functionality, input/output, status and control signals are
precisely stated.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

InputL/R
Dclk

Reset
Frame SIPO
DatainReady

Memory R; |: Memory Coeff MemoryData
Dlk 16x8 512x9 256x16
ek X X X
Start Reset
Resef_n Operandl

Frame Control Logic Operand2
TnputyR Gperation Adder/Subtracter

TnReady Result

Datain

DataOut

Sclk
Reset
sleep

OutReady Outputl/R

Figure 4-8 A high level abstraction of the MSDARP architecture which facilitates to
define functional blocks

This high level architecture 1s made up of 7 unique subcomponents, 4 of which
are repeated for the second audio channel. Below 1s a high level architectural
diagram of the MSDAP. The signals between this ASIC chip and the hosting system
have been defined i the specifications for the MSDAP. Some imternal signals
between the functional blocks have been introduced to define computation and

control status. For example, control signal WrEn, which can be seen between

Control Logic and Memory R; blocks, didn’t appear when we defined the operation

mode at the system level in Chapter 3.

* Control logic definition

The main function of the Control Logic of the MSDAP 1s described in
Chapter 3 when discussing the system mode and settings.

A sample VHDL code has been developed which handles the state
transitions.

In addition, this Control Logic handles all data transfers and memory
reads and writes. It also handles trivial operations such as sign
extension and shift operations.

For this reason, other components in the MSDAP architecture are
designed as asynchronous elements which are able to start their
function within 1 Sclk cycle.

The Control Logic also completes the task of monitoring and updating
top level control signals as specified by the MSDAP specification (the
operation mode in Figure 3-7, and signal format and waveform at
Section 3.5.2).

10/11/11

Modern ASIC Design - Chapter 4 Architecture Design

SIPO definition

— The SIPO module 1s the front-end data interface of the
MSDAP that takes 1-bit serial data synchronous to a Data
Clock and converts it to 16-bit parallel data.

— New 1nput words are signaled by an increase in the Frame
signal on the first bit of the serial frame and output words
are signaled ready by an increase in the DataWordReady
signal for the clock cycle, so that the word 1s guaranteed

valid.

— The SIPO module is cleared by an active high Reset signal.
Following are its I/Os and data and control signal

definitions.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

» SIPO definition (details)

Definition

Dclk Input Data clock running at a frequency of
768 KHz provides the timing reference
for the SIPO module. All I/O of the
SIPO module 1s synchronous to this
clock with the exception of Reset.
Reset Input When Reset 1s set high, the SIPO
module 1s cleared. Reset may be

asynchronous with Dclk.

Frame Input Frame aligns the mput data. Frame 1s
set high for one Dclk cycle when the
first bit of a 16-bit data word 1s
recerved, after which i1t 1s set low.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

InputL carries left channel data words
in serial form. Bit 0 1s the MSB and 1s

transmitted first, Bit 15 1s the LSB and
1s transmitted last. InputL 1s read on
the rising edge of Dclk.

InputR carries right channel data words
in serial form. Bit O 1s the MSB and 1s

transmitted first. Bit 15 1s the LSB and
1s transmitted last. InputR 1s read on
the rising edge of Dclk.

DataWordReady

DataWordReady indicates when the
parallelized form of the input words (L

& R) 1s valid and 1s updated on the
rising edge of Dclk.

DataWordL

DataWordL 1s the 16-bit parallelized
mput for the left channel and 1s updated
on the rising edge of Dclk. DataWordL
1s valid only when DataWordReady 1s

high.

DataWordR

DataWordR 1s the 16-bit parallelized
mnput for the right channel and 1s
updated on the rising edge of Dclk.
DataWordR 1s valid only when
DataWordReady 1s high.

Table 4-1 Signal and pin definition of SIPO

The memory modules all operate in a similar manner. There 1s a separate memory
for r; data (8-bit words, 16 word depth), coefficient data (9-bit words, 512 word

depth), and audio data (16-bit words, 256 word depth). Each memory has its own
control and data ports. This discussion 1s generalized to highlight the simularity of
the memory modules. Writes to the memory occur when WrEn 1s high to the address
specified by Addr. The Dataln port 1s connected to the output of the SIPO module.
Reads occur from the address specified by Addr, when Addr 1s changed, and when

the output 1s presented to the DataOut of memory. All memory is cleared when the

Reset signal 1s received. Sign extension is performed by the controller module.

Definition

Dataln

Input

This 1s the data iput of the memories and 1s
8. 9, or 16-bits wide depending on the
memory module.

Reset

Input

When Reset 1s high, all memory locations are
cleared.

WrEn

Input

When WrEn 1s high, a write 1s being
performed to the memory.

Addr

Input

This 1s the address input of the memories. Its
width 1s 4, 8, or 9-bits wide depending on the
memory module.

DataOut

Output

This 1s the data output of the memories and
1s 8, 9, or 16-bits wide depending on the
memory module.

Table 4-2 Signal and pin definition of memory block

10/11/11

Modern ASIC Design - Chapter 4 Architecture Design

47

The adder/subtracter module operates on 24-bit sign extended operands (Operandl
and Operand2) and provides 24-bit results. The Operation port dictates subtraction
(when the value 1s 1°) and addition (when the value 1s ‘0”). The Operation value 1s

determined by the MSB of the coefficient value in coefficient memory. The result 1s

fed back to the Control FSM. If Reset 1s high the module 1s cleared.

Definition

Reset Input When Reset 1s high, the adder/subtracter 1s
cleared.

Operandl Input This 1s the 1st 24-bit sign extended operand
(extended from 16-bits by controller FSM).

Operand2 Input This 1s the 2nd 24-bit sign extended operand
(extended from 16-bits by controller FSM).

Operation Input Dictates operation. ‘1’ = subtraction, ‘0" =
addition.

Result Output This 1s the 24-bit result of the addition or

subtraction that 1s fed back to the controller.

Table 4-3 Signal and pin definition of ALU

[O/11/11

Modern ASIC Design - Chapter 4 Architecture Design

 Shift operation definition

— The shifting operation of the MSDAP is performed by the
Controller FSM by reassigning the bit positions of the
output of the adder when accumulating the final result and
thus 1s not specified as a separate module.

— The DataOut signal 1s the final shifted result that 1s
outputted by the PISO module.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

* PISO definition

— The PISO module 1s the data interface of the MSDAP that
processes 40-bit parallel data outputs serially via a 1-bit
port synchronous to Sclk upon the arrival of the next Frame
signal.

— Output words are signaled ready by an increase of the
DataOutValid signal.

— The OutReady signal 1s set high for the 40 bits that the
PISO 1s serially outputting data.

— The SIPO module 1s cleared by an active high Reset signal
and does not output when it receives a high Sleep signal.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

Sclk

Input

Definition

System clock running at a frequency of
26.88 MHz provides the timing reference
for the PISO module. All I/O of the SIPO
module 1s synchronous to this clock with
the exception of Reset.

Reset

Input

When Reset 1s set high, the PISO module 1s
cleared. Reset may be asynchronous with
Sclk.

Sleep

Input

When Sleep 1s set high, the PISO module 1s
cleared and does not output data.

Frame

Input

Frame aligns the output data. When Frame
occurs, the PISO module begins to output a
new 40-bit data word serially.

OutputL

Output

OutputL carries left channel output words in

serial form. Bit 0 1s the MSB and 1s
transmitted first. Bit 39 1s the LSB and 1s
transmitted last.

10/11/11

Modern ASIC Design - Chapter 4 Architecture Design

OutputR carries right channel output words
in serial form. Bit 0 1s the MSB and 1s
transmitted first. Bit 39 1s the LSB and 1s
transmitted last.

OutReady OutReady 1s high when the PISO 1s
outputting data serially.

DataOutValid DataOutValid indicates when the
parallelized form of the output words (L &
R) 1s valid and ready to be output.
DataOutL DatOutL 1s the 40-bit output word for the
left channel and 1s valid only when

DataOutValid 1s high.

DataOutR DatOutR 1s the 40-bit output word for the
right channel and 1s valid only when
DataOutValid 1s high.

Table 4-4 Signal and pin definition of PISO

* From the above example, we see how functional blocks are
defined.

» With a complete definition, blocks can be assigned to different
design groups and be verified individually before integrating
them 1nto the system.

* The definition of a function block also includes control signals
since a block 1s controlled by a top level FSM.

— For instance, a signal Reset is a signal from the Controller FSM
that instructs the memory, SIPO and PISO to clear their contents
and set them to an initial condition.

— A functional block also usually feeds the controller information
about its status. DataOQOutValid in the PISO block 1s such an
instance.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

Time Budget and Scheduling

* In a parallel manner, during the architecture development
we not only define the functional blocks and
corresponding relations, but also assign a time budget to
each functional block.

* Specifically,

— Each functional block should be given adequate cycles to
complete 1ts assigned job;

— The nput to each functional block must be ready when it 1s
needed.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

* Time budget 1s usually obtained from a process called
resource allocation and scheduling.

» Resource allocation assigns computation tasks to
functional blocks, and scheduling arranges these tasks in
such a way that they can be executed without confliction.

* To find the time window for a task to be executed we can
use the schedule techniques like as soon as possible and
as late as possible.

— However, combining scheduling with optimal resource
allocation is a difficult task. Most of the time, 1t 1s still a
decision made based on experience.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

* The time budget depends on the proposed architecture
and 1ts feasibility must be analyzed carefully in the
architecture design stage.

* A structure is requisite to discussing this topic.

* In the next section we shall use the architecture of our
MSDAP project to show how to allocate the time budget.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

A Sample Architecture of the MSDAP project

* Figure 4-8 1s a top level general datapath architecture,
which we have used to assist the discussion of how to
define functional blocks.

* However, architecture should be developed such that it
can eventually be coded at an RTL level so that a cycle-
by-cycle simulation can be carried out to verify the
correctness of the digital system without involving
detailed logic and circuit designs.

* The degree of detail depends on the designer, but it must
be to a level where we can write VHDL code and verity
the hardware design.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

* In doing so, we need to do work similar to what we did 1n
developing the specification of the MSDAP. That is, we need
to define the signals and functions among the functional
blocks.

— For example, in referring to the general architecture in Figure
4-8, we do not know how to write the VHDL code since we
haven’t defined the interfaces between the functional blocks.

— Therefore, one can’t tell in what way ALU works with memory
and output interface blocks.

— In short, too many details are missing there.

— In the following we look at how to develop such an architecture.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

An Architecture Sample

* Based on the spec, a proposed architecture for the
MSDAP 1s shown 1n Figure 4-9, which allows us to
describe it in VHDL.

— Only one channel 1s shown here for clarity. Notice that not
all the I/O pins for each functional block have been
included.

— Also, the main controller 1s shared between the two
identical datapath blocks, left and right.

— (Appendix D presents a complete version of this
architecture with all detailed notations and definitions.)

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

coelf 8 bits)|
Read_address!

Rj’s (8 bits) |
 Read_address)

clear

1 bit shift right

Bits [39 - 16]

40 bits

|—PDntI0|lt
P Inready

» Outready

Figure 4-9 A sample architecture

= Data Memory

This memory unit stores the input audio data. It stores up to 256 16-bit
words, since the maximum order of the FIR filter 1s 255. It also contains an

all-zero detector for the last data stored. The following are the I/O pins:

= CLEAR (input): Clear signal coming from the main

controller.
LOAD (input): Load signal connected to frame.
PDATA IN (input): 16-bit input data.

WRITE ADDRESS (input): 8-bit write address, controlled
by the Main Controller.

WRITE EN (input): Write Enable.

READ ADDRESS (input): 8-bit read address controlled by
the ALU Controller.

DATAOUT (output): 16-bit output data stored in location
READ ADDRESS.

For the proposed architecture, we can analyze the time budget for each block.

Readers may need to revisit Chapter 3 to connect this discussion with the specs of

the MSDAP, especially the top level system settings. In the following we focus on

the budget for the ALU unit. Considering that the frequency of the data clock 1s

768kHz and each frame has 16 DCLKs, we can calculate that each frame lasts
16

T epame = =20.83us . The system clock frequency 1s 26.88 MHz, and thus
768kHz

=372ns . Consequently, there are

has a pertod of Ty, = Y 8;MH
: Z

26.88MHz
768kHz

computations. As mentioned previously, the rate of the system clock depends on the

T rpanie _ 16(

T, SCLK

)z 560 SCLK cycles in one frame to perform all the

particular implementation and can be different for different chips. The system clock
rate based on the above analysis 1s actually realized in the design shown in

Appendix D. The time budget for each operation 1s shown in Figure 4-10 and the
jJustification 1s detailed in the following.

Computation done
16 dclks = 560 sclks

T i

1
|
|
|
1
Receive Data 16 dclk !
| [16 + >R +2] < 530 scks
|
l‘

Max.530 sclks to compute
output

I

|

|

|

|

|

|

|

|

|

|

| |
| |
| |
| |
1lsclk to |
Start computation 'dlad R1 :
>—> |
! R1 sclks to !
! compute ul :
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

ul

1 sclk to load
R2 & shiftright U2
>—>

R2 sclks to
compute u2

1 sclk to load
R16 & shiftright u16

S>—>

R16 sclks to
compute u16

Last shift righ{
> |
|

Load to P2S

«

Figure 4-10 Time budget analysis for the ALU unit

As the data 1s coming in serially, we need 16 DCLK cycles to capture the data.
The computation on this data of course cannot be done until all the 16 bits have been

recetved. That means the computation for this input will not start until the next

frame, as shown in Figure 4-10. For the calculation of the filter’s output, we need to
compute the 16 u; values and the FIR output y based on the values of the 16 R; (the

coefficients which appeared m u;). We require 1 SCLK cycle to load R;. Depending
on 1its value, the following R; coefficients are read, which take R; SCLK cycles. As it
reads the coefficients, the value of u; 1s computed 1n the accumulator. Thus, 1t takes
(R, + 1) SCLKSs to compute u;. The operation 1s repeated for the following u; terms,

with the difference that the same SCLK cycle 1s used to read R; values and the shift-
right operation. This 1s the case from R, through R;s. One extra SCLK 1s needed for

the last shift-right operation. Finally, an additional SCLK 1s needed to load the result
into the P2S. So, in total 16 + X R; + 2 < 530 SCLKSs are required to complete the

computation and load 1t into the P2S. Since this 1s less than 560 SCLK cycles, the

whole computation will fit into the data frame, as shown in Figure 4-10.

Now we have completed the time analysis. In the late stage design, we need to

ensure each component can complete its job in the budgeted time. For example, in

the late logic design stage we need to make sure that the ALU will complete the
computation in 16 + } R; + 2 < 530 SCLKs.

Summary

* In this chapter we discussed how to develop an
architecture based on the given application.

* The most popular architecture 1s a datapath which
consists of control logic, input/output, and an ALU unit.

* These blocks can be further partitioned into smaller
functional blocks to facilitate a clear and accurate
definition of timing and operation.

— Such level of detail 1s necessary for an accurate analysis of
timing budget.

* Final architecture should be described at the RTL level for
synthesis and verification.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

* A sample architecture for the MSDAP is given to
illustrate the concepts mentioned in the discussion.

— VHDL codes of the main blocks of the sample architecture
are given to show how to accurately describe each
functional block without any human language ambiguity,
since such code can be simulated for verification.

* The whole design of the MSDAP, including its
architecture, 1s given in Appendix D, from which the
interested reader can have a complete picture of the
design process.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design

* This chapter also discussed how to explore the parallelism
by using multiple processors.

— The key 1ssue 1s to properly align the data and operations to
obtain the maximum speed-up.

* The optimal design is if all processors are doing the
necessary computations and not being idle.

* Optimal scheduling and resource allocation 1s the key for
a good architecture.

— This topic has been studied extensively in high-level
synthesis. Readers who are interested in this topic can
check the research literatures on this subject and find the
state-of-the-art CAD tools to assist architecture design.

10/11/11 Modern ASIC Design - Chapter 4 Architecture Design 70

Homework

IF.

Explain how to define function blocks in architecture design. Try
to formalize the method and give an example.

Give an example to show how data and computation dependency
prevents us from achieving linear speed-up.

Summarize the method of architecture development in ASIC
design.

Synthesizing a behavior model to get an RTL level netlist needs an
“underlined architecture”, for any non-trivial application. Discuss
this 1ssue using an example.

Discuss why architecture design automation is extremely difficult.
Suggest the method to solve this problem.

Develop an architecture of the MSDAP.

Explain the 1ssue of “resource allocation” and “scheduling” in the
architecture design. Use the architecture if MSDAP as an example.

10/11/11

Modern ASIC Design - Chapter 4 Architecture Design

